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Introduction

• The perturbation technique is one of the most important and unique tools at hand. It
allows

– to reduce the complicatedness of a given problem,
– to decrease the computational load.

•  The favorite application of the perturbation technique is to estimate how significant the
deviation of a given problem from the one can be solved employing a simple technique.

• It is a general knowledge that simulation of radiative transfer through a realistic 3D
cloud requires  a lot of computer power and time. That is why any simplification of the
simulation scheme is of great interest, especially, for remote sensing  and cloud
modeling applications. In this case the perturbation technique has advantage enabling
one to estimate the effect of an arbitrary cloud structure on the radiance propagation
using close form expressions.

• There are several ways to formulate the perturbation approach, but here the one based
on variational principle will be considered.
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Variational principle to derive RTE
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 is the problem parameter space,  is the solution of the adjoint RTE,

( , )

( , ,

e s
I

P n n S R

A r n

" "

(
r r

r r

 is the solution of the direct RTE,  and  are the extinction and scattering

coefficients, respectively,  is the phase function,  and  are the source 

and receiver functions, and )n(
r

 describes refelection properties of the 

boundary surface.



U N C L A S S I F I E D

RTE’s
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Perturbation technique

Variation of the functional at the point of minimum
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Perturbation technique summary

• Advantages:
– a variation of any cloud field optical properties;
– any radiance characteristics;
– possibility of close form expressions;
– analytical insights.

• Drawbacks:
– it is difficult to obtain an a priori estimation of the accuracy;
– unclear the variation strength limits.
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Orthodox perturbation

Why conventional? To solve 3D problem we start from some average effective
medium, and then consider the difference between real and effective as the
perturbation
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A toy problem

• We calculate the radiance density within a cloud with a square
wave extinction coefficient variation:

• H=1 km, L=0.5 km, and average σe=64 km-1

• The phase function and single scattering albedo assume to be the
same within the cloud: ω0=1.0,  g=0.85.

• In this case, the variation of the radiance density variation has the
form
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SHDOM, ICA, and Perturbation. I

Diffusion perturbation             Δσe =1 km-1                        Δσe =16 km-1                        independent pixel
                                                                                                                                                  (Δσe =1 km-1)

Variation of the radiance density radiance normalized on Δσe. The Sun cosine is 0.5. Note the
shifted position of the isolines with respect to square wave oscillations.
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SHDOM, ICA, and Perturbation. II

Selected cross section show that the perturbation (black dashed lines) provides a more
accurate estimation than the ICA (red lines). The SHDOM results are depicted by  the
magenta (Δσe =1 km-1 ) and blue (Δσe =16 km-1 ) lines.
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I3RC cloud with vertical homogeneity

Optical thickness profile        Perturbation                         SHDOM

The optical thickness profile is shown below. The cloud is 2-dimensional with
H=2.3 km and X=32 km. The Sun cosine is 0.5. The <τ>=19.6.
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Non standard perturbation

Let us consider a part of the differential operator of the RTE as perturbation

sin( ) cos( ) sin( )sin( )
d d

L
dx dy

! " ! "# = +

Now our base case is a true 1D
problem which we shall solve using
the diffusion approximation.

For simulation we shall use the
same I3RC cloud model.
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SHDOM vs Perturbation

Correction to the ICA calculated using the

perturbation approximation and an accurate

numerical simulation (SHDOM) .

•Perturbation approach lacks smoothness

•Perturbation corrections are more significant

near cloud top and tends to zero at the

bottom.
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Orthodox vs Non-standard

• Orthodox approach
– any angle of incidence;
– small variations of the medium properties

• Non-standard
– allows one to estimate only the adjacency effect due to slant

illumination
– applicable at any variations of the medium properties
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Conclusions

• The comparison of the diffusion perturbation technique
predictions with the results of the SHDOM simulation
shows its good accuracy to depict the radiance density
(or the solar heating rate).

• Incorporation of a fully analytical diffusion perturbation is
simple and allows one to obtain a significant
improvement with respect to the ICA.


